
SPIS Wednesday 10:15am Lecture

Computational complexity

- A way to describe an efficiency of an algorithm

- Turning on lights: O(1)

- Call out counting: O(n)

- Stand up counting: O(log2(n))

Python coding

- # comment

- Displaying output:

o print (‘Hello World’) # can take multiple

strings separated by commas

- Scalar Object Types:

o int for whole numbers

o float for real numbers

 consider precision

o bool for True or False

o type (xyz) reports the type of xyz

- Non-Scalar Object Types:

o class

- Operations:

o + addition (overloaded for strings)

o - subtraction

o * multiplication (overloaded for strings)

o // int division

o / float division

o % modulus

o ** power

o Can include addition, too:

 abc = abc + 3 is the same as: abc += 3

- Comparison

o == equality

o != inequality

o < less than

o <= less than or equal to

o > greater than

o >= greater than or equal to

- Bool operators

o and

o or

o not

- Variables

o = assignment: associates variable names with

objects (scalar: int, float, bool)

 abc, def = 3, 4

o Select names well

o Case sensitive

o Can contain letters, digits, _, (can’t start with

digit)

o Can’t be reserved words (keywords in language)

o Typing by context

- Blocks of code are defined by indenting (not curly

braces)

- If statement example: (elif means: else if)

if abc == 2:

print (“abc is 2”)

 else:

 print (“abc is not 2”)

- Loops:

o # while loop example

abc = 0

while abc != 10:

 print abc

 abc = abc + 1

o # for loop example

abc = 0

for xyz in range (0, abc):

 print xyz

o break leaves loop early

